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Preface

This report will hopefully help in paving the way

toward a useful algorithm for the estimation of launch

vehicle parameters. Although no such algorithm is contained

herein, I feel that I've identified some major problems and

perhaps have recommended reasonable approaches to solutions

to those problems.

This work could not have become a reality without the

typing efforts of Ladonna Stitzel. Her help is deeply

appreciated. I'd also like to express special thanks to

my advisor, Dr. Bill Wiesel. A thesis effort which

doesn't meet personal goals can be frustrating, but

his guidance and inspiration made this a fruitful learning

experience.
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Abstract

A seven-state inverse covariance (Bayes) filter was

implemented to determine performance parameters of a

launch vehicle. Data measurements were restricted to

azimuth and elevation readings, typical of data from an

infrared sensor in geosynchronous orbit. Results of

this study indicate that the magnitude of copstant

acceleration, assumed to act in the direction of velocity,

can be estimated using a seven-state filter (3 states

each for position and velocity, and a seventh state for

acceleration). The system is unobservable for short arcs

of data if only one observer is available. The addition

of a second observer can allow the system to be observed.

An ad hoc fading - memory technique, in which confidence

in the seventh state estimate was decreased, proved

unsuccessful in estimating variable acceleration of a

launch vehicle. Further attempts at estimating variable

acceleration with an eight-state filter (3 states each for

position and velocity, and seventh and eighth states

involving engine exit velocity and propellent mass flow

rate) were unsuccessful.
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I Introduction

With the increasing number of reconnaissance and other

data-gathering satellites, a growing source of observation

data is becoming available which can be used to supplement

or replace ground-'ased or aerial data for various requirements.

In some *.istances, this space capability allows for the

ga*hzring of data previously unavailable from the ground or

air. Measurements of elevation and azimuth from satellite

nfrared sensors fall into this category. The use of these

iata in estimating parameters of ballistic missiles and

"eenur! vehicles his therefore been limited.

S!>ss hav. been conducted in the past which concentrate

on estimation of position, velocity, and performance

parameters of maneuvering reentry vehicles. The filters

eveloped in these studies have used ground-based tracking

rad; s as their primary measurement source. Typical data,

then, has included azimuth, elevation, and range.

This paper presents the development of an inverse

covariance (Bayes) filter updated by satellite data. The

satellite data consist of elevation and azimuth angles (no

range) as detected from an orbiting infrared sensor. These

data would be taken during the ascent of rockets or ballistic

missiles. Of primary interest in this development was the

ability of the filter to estimate accelerations of the target

vehicle in addition to its position and velocity.

,

- [ - " , , -



Assumptions:

(1) The data satellites were assumed to be in geosynchronous

equatorial orbits.

(2) Accuracy of the infrared sensor was considered the

same for determining both elevation and azimuth angles.

(3) The first filter was assumed to have seven states;

x, y, z components of position and velocity, and an

acceleration term resulting fron thrust. This model

was thought to be general enough such that it might also

be used to estimate deceleration of a reentry vehicle due

to drag.

(4) The acceleration term was assumed to act along the

velocity direction vector in order to keep the model simple.

Chapter II of this paper presents the derivation of

the dynamics equations for the filter. This is followed

in Chapter III by the development of observation relationships

between the heat emitting ballistic missile or reentry vehicle

(subsequently referred to as the target vehicle) and the

satellite-based infrared sensor. In Chapter IV the filter

equations are derived. In addition, Chapter IV also contains

a discussion of the problems encountered during implementation

of the seven-state filter. A follow-on filter with eight

states is introduced and briefly analyzed in Chapter V.

Chapter VI contains conclusions resulting from the development

work and presents recommendations for further study.

2
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II Derivation of Problem Dynamics

The equations of motion for the target vehicle were

derived from the general two-body equation:

+ 0 (2-1)
r 3 rr

where *p GM

r = xi + yj + zk (2-2)

The state model for the filter initially had seven

states; three for position, three for velocity, and one

for acceleration due to thrust or drag.

The state vector, x, therefore was:

x = x (2-3)

y

z

v x

v
y

v Z

a

The state vector propagates in time according to the

vector differential equation:
x = F(x(t),t) (2-4)

In x, the three position states denote position

components in the x-, y-, and z- directions in a-coordinate

frame with its origin at the earth's center and the z-

direction being north. The rates of change of these states

3



were given by their respective velocities:

= v (2-5a)

y= v (2-5b)
y

x v (2-5c)

The time rates of change of the three velocity states

were derived from the two-body equation and the assumed

representation for acceleration due to thrust (or similarly,

deceleration due to drag). The acceleration will be discussed

further, but was basically modeled as a vector acting in the

direction of velocity and having constant magnitude over

time increments between observations. Therefore acceleration

was given by:

a =arv (2-6)

Adding this to the two-body equation,

r r + a (2-7)r 3- a + v
3g

yields equations for the time rates of change of the

velocity states:
vx

(2-8a)
v__

r v
V

Vz z + (2-8c)= 3  V +

4



As stated previously, the seventh state, acceleration,

was modelled as constant over time intervals between

observations. It was assumed to act always in the direction

of the velocity. The significance of this implementation

was that this model could be used to represent acceleration

during ascent (a positive value) or, with a change of sign,

could represent deceleration of a reentry vehicle descending

through the atmosphere. This implementation would allow

the same filter structure to be used from lift-off to

reentry vehicle impact.

With acceleration constant between measurement updates,

its time rate of change was given by:

= 0 (2-9)

The vector F was formed as:

v (2-10)x
Sy Vy

vy

z Vz
* vvx u x+ a x

r IvI
vv
y y + a

z v
-- 3 z a 17r r

With an assumed set ot initial conditions (x(t) t0 )t 0,

the vector equation

= F (x,t)2-11)

(-x t
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can be numerically integrated to obtain a nominal trajectory.

This trajectory is assumed to be known based on assumed

initial conditions, but the true initial conditions differ

slightly from those assumed, therefore

X(t) = X0 (t) + 6x(t) (2-12)

where x(t) = the assumed nominal trajectory

x0(t)= the true trajectory

6x(t)= the deviation from true trajectory

Differentiation gives

d () ( ) + d3t (t) + ( - 6x(t) (2-13)

dt dt 0(t dt

which, together with eq 2-11 gives

d -- Fd2-4
d x 0 (t) + dt 6x(t) = (x0 (t) + Sx(t)) (2-14)

where the time dependence of F has been incorporated into

x(t). Consider the first component of aq 2-14:

d -Xo(t) + d X(t
d o (t d t X 0t = f[Xo (t)+6 xo (t):.aI (t)+6-xI (t)'" "xn (t)

6n (tj(2-15)

Letting t be fixed gives the right side of eq 2-15 as

f 0(-0 + a, Xi+ .... + y) (2-16)

6
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Application of Taylor's theorem gives

Iaf 0 af 03f0f0()fa,xl+$j, . . .x n + a+ 0Y ) = f 0  0 '+ ly

00n 0 0 0

1 1

xn xn n n

+ Ok2) (2-17)

where 0(2) represents terms of second and higher orders

which will be relatively small as long as a, 8,...y are small.

So, to first order

d d -d , 0 (t)+=26x 0 (t) = (Xl ' ' ' x

f f
L0 + + a0 6 (2-18a)ax 0  0 a 1x 1 "'" n  n

2x 0 2 0L n

x1x1 xl1

Xn n n

In a similar manner, the second component of eq 2-15 is

dX (t)d 6xl(t) f "

f f f
+ 1 +-- Mn (2-18b)

o×0

1x 1

xn xn n
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But

X(t) = F(x(t)) (2-11)

So recalling eq 2-14, eq 2-18 can be written as

6fo f0 ... 3 0 t  (2-19)
at 0 (t = x0  3xi X

dSX (t) 31 9 f 6 l ( t )
t 1 ax0  ax 1

da f......... afn X (t) 6 n (t)

xl(t)

xO n

xn (t)

So, to first order, 6x(t) satisfies the time-varying

linear differential equation:

{d

d - [ () 0(t)]I6 (2-20)

where A[x0 (tj is defined byr- 0
0__(____ (2-21)

px . t r

A, then, is a time-varying matrix whose elements are functions

of x and t. The derivation of all elements of A is contained

in Appendix A.

I



The elements of the matrix A were verified by conducting

a numerical check given by:

F (x.+6,t) - F (xt) (2-22)A ij = xi(-2

where:

A.. = the element in the ith row and j th columns
! -.5

= a deviation on the order of 10 or smaller

Fi(x,t) =the i th component of F, evaluated at x

F. (xj +6,t)= the i component of F, calculated when 6 has

th
been added to the j state of x

In words, this check gives an approximation to the

elements of A as a result of small changes in the state vector,

x. If the matrix, A, derived numerically agrees with A

evaluated at the state, x, this provides assurance that the

partial derivatives taken in deriving A are correct.

Eq 2-20 is linear, therefore solutions to it can be

superimposed. Also, a fundamental set of n solutions

(n vectors, 0i) can be constructed from

A i(t0) (2-23)
O. Oi 0

where 4i(t ) is a vector having 1 as the ith component and

zeros elsewhere

The general solution to eq 2-20 is given by

6x(t) = 6x1 (t0 ) 4l(t) + 6x2 (t0 )T2 (t) +..."xn(t )Tn(t) (2-24)

which can be assembled in matrix form as

6 (t) - 4(t,t 0 ) (t 0 ) (2-25)

9

'14 a



Since the columns, 4.. of 0(t,td) satisfy eq 2-23, so

does the matrix itself. The state transition matrix, 4,is

given by

(t't 0) A(t )4)(t,t 0  (2-26)

and ct't 0) 1

where I =the identity matrix

10r



III Derivation of Observation Relationships

The observation relationships for this problem were

derived with both the observer and target vehicle in the

same, x, y, z coordinate frame. The measurements from the

observer were the two angles, azimuth and eevation as

shown in Figure 1.

Azimuth was the angle measured in radians (positive

in the clockwise direction) between a local vertical, z'

and a local position vector, r'.

Elevation was the angle, also in radians, between the

negative of the position vector of the observer, -R, and

the vector from the observer to the target vehicle, Q.

The azimuth and elevation relationships were derived

from the general equations:

a b
cos y =-(3-1)

sin 'y = xbl (3-2)

Iii iI'l

|

11
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P

IZ
r

I z

R = position vector of observer

r = position vector of launch vehicle

p = position vector of launch vehicle relative to observer

rl' = position vector (in a plane orthogonal to R)
of launch vehicle relative to 0'

el = elevation angle; the angle subtended by p and -R

az = azimuth angle; the angle subtended by rT and
the line segment from C' to z'

Figure 1. Illustration of observation angles

12
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Elevation Derivation

r

t
el

sR

t = a unit vector normal to Rand containing point P

S = a unit vector along R

A Figure 2. Geometry for elevation derivation

Elevation is the angle between P and -R, therefore

from Figure 2 and eq 3-1

cos , = - = (3-3)

From eq 3-3

=1 cos (3-4)

Introducing direction to eq 3-4

- Cos (3-5)

From vector addition

which, combined with eq 3-5 gives

Cos (3-7)
iIR

13 , i



Therefore

r - - Ir cos (3-8)

Combining results of eqs 3-3 and 3-8 gives

t ~ ~ ~ - 7 a-~I~~~]= - R r] (3-9)r-i tT = - - 1 1 1 1 , r -

From Figure 2

sin(el) = i (3-10)

I.PI

and

p= r- (3-11)

Therefore from eq 3-9

sin(el) - - 3

which gives

el sin 1  (3-13)

14



Azimuth Derivation

k

az

t = vector the same as in Figure 2; normal to R and

containing point P.

k = a unit vector in the z direction.

Figure 3. Geometry for azimuth derivation

Using eq 3-1 and Figure 3 gives

t .k tk
cos(az) - Ik tk (3-14)

Using eq 3-9 to expand for t

kI

4 .cos(az) = (3-15)
-rR

R r
rR -- T

I2

15 ii
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So the equation for the azimuth is

az cos LrkI-1
____ ____ ____ ___(3-16)

The sign of the azimuth angle is ambiguous from eq 3-16,

therefore when the equation was implemented in the filter, the

sign was determined by looking at the z component of the cross

product, R x r. If the z component was negative, the azimuth

was negative.

From the equations for the observation values, elevation

and azimuth, it is seen that they are a nonlinear function of the

first three elements of the state vector as well as the

position vector of the observer. In reality, the observer's

position would be known. Thus, the two element observation

vector, z can be written as a function of the state vector:

Z(t i ) = G (x(t i ),t i ) (3-17)

If x is the true state vector, a perfect observer would
0

produce exact measurements:

(0(t) = ) ,t (3-18)
0 i0

writing

x (t) = x(t i ) + 6x(t i ) (3-19)

0 i'1 1

16
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the true error, e (t.), can be written:

e (t i ) = z(t) - z 0(t )= G(x(ti)ti)-G(x 0(t i ) ,)t i  (3-20a)

= G(x0(ti)+6x(t) ,ti)-G(: 0 (t i ) ,t i )

(3-20b)

= 6 x(t i ) (3-20c)

0

Since we only have an estimate instead of the true

state vector

x(ti) Xr(ti) +6x(t i) (3-21),

where x r(t.) is an estimate of the state vector and

X r(t) is a reference trajectory.

The residual is given by:

T(t.) = Z(t) - z r(t) = G(x r(ti)+6x(t i ),t i )-G(x r (t ) ,t i )

(3-22)

which is approximated by

r(t.) - SX(t i) (3-23)

xr (ti)

Therefore, the residual, r(ti), is linearly related to the
correction ,x(t i), between the reference state , x (t.),

and the state estimate, x(t). The linearizations are

embodied in the H matrix given by

17
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E (t (3-24)

@X (t i x r (ti)

Since G(ti) is only a function of the three position

elements of the state vector, the last four elements of

each row of h are zero. The drivation of the first three

elements of both rows of H is given in Appendix B.

In order to make the residual a function of the

correction at t0 instead of ti, the state transition matrix

is again introduced as in eq 2-25

Therefore

r(t.) H(t.) Sx(t.) = H(t.)_D(ti,t 0)6x(tO) (3-25)

The matrix product, H(ti)_(tit 0  is designated T (ti).

The derivatives in H were verified in the same manner

as those in A. The verification resulted from looking

at the equation

H. G(xi+A)- G(x,t) (3-26)
-i

thh
where H. = the it column of the H matrix

G(xi+A,t)= the evaluation of G with 'A added t6 the i state

G(xt) = the evaluation of G with no A added to any of

the states

A a small value of the order 10-

I
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IV Seven - State Bayes Filter

This chapter presents the derivation of equations for

the Bayes filter and the results of their implementation

for the seven - state filter.

Derivation of Equations for Bayes Filter

The problem dynamics are given by the vector equation

x = F(x,t) (2-11)

as derived in Chapter II. Because the dynamics of the

problem are well understood, small deviations of the state

vector at any time can be expressed as

6x(t) = (t,t 0) 6x(t0) (2-25)

This expression is valid as long as the 6x's are small.

Eq 2-25 was used to get an expression for the residual,

r(ti ), as a linear function of the correction at the epoch

time, 6x(t 0)

r(t i )  H(t i) (t ilt0 ) 6 (t0)

T(ti )6x(t 0) (3-25)

There is an error, due to imperfect measurements,

between the true residual available if the true state vector

were known, and the residual approximation in eq 3-25,

therefore

r(t) - T(t)6 x(t )+- e(t i ) (4-1)

19
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Rearranging, the error is expressed as

e(ti) = r(t.) - T(t i )6x(t) (4-2)

Associated with each observation vector, zi, is a

covariance matrix, Qi, containing information abcut the

accuracy of the data instruments. If the measurements

being processed are mutually independent, Pi is a diagonal

matrix. Using Gaussian error statistics, the probability

of getting a particular error vector can be expressed as

f(e)= ( 2 D) -N/ 2 1T exp (- J) (4-3)

where N = the number of measurements

2 = the covariance matrix associated with the data

j = -T and is a scalar

The principle of maximum likelihood is invoked by

maximizing f. J is a quadratic form and must be minimized

in order that f be a maximum. This is done by solving

3J a (-T -l-
ax -e e)= 0 (4-4)

-- heT T T

for 6x(t 0  Using the identity (ab) bTa

dropping the time dependence for clarity,

(r -Tx)T Q ( -

_-T -1- -T- - -TT -1- -TT- -
-rQ r-rQP T6x- 6xT P r + 6xT P T6x (4-5)

Noting that -_(a T x) - a__( T )= -a , the partial derivative:
ax ax

, can be taken and set equal to zero:

20
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-T - T T - TT TT-1 T + TT' -

T -1- T -1- T -1 -=-2- r-TQ-r + T2:6x + T Pl x (4-6)

(Note: Q is symmetric, therefore (2-) = 2

Setting - equal to zero and dividing by two yields

0 = -TQ -r+ TQ -T61x (4-7)

which gives

6-=(T -1 -1 T -1-
= ) TQ r (4-8)

T-1 -1
where the inverse, (T 2 T) , exists as long as the

states are observable over the interval of interest.

To fine the covariance associated with 6x, eq 4-8

can be rewritten as

6x = W r + e (4-9)

where W = (TT-1T)-1 T T -

Using this notation, the covariance of x (t

P.(t0 ) =E [(x x0 ) (x x0 )T] (4-10)

is rewritten as

P'- (t 0 = E [ z H ~ z - Tz T (4-11)

and since W is deterministic,

P-(t 0 ) W E (Z - 0 (z - 0 ) T] wT (4-12)

Since 2 is the covariance of the measurements eq 4-12 can

be written as

P (t 0 ) = WpWT (4-13)

21
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Expanding and simplifying:

=T -1 -1 T T T 1 Tp^(t o T)( T
-x t0) 2 P- T 2.LQT2 )'12

T -1 -1 T T -1iT FT -1- T=(T Q-T) T (T ) T

Px(t 0 ) 1 T)- i (4-14)

These equations can be altered somewhat to handle data

in a sequential manner. If new data, z,is to be added to

an old estimate, x(t0 ), and its covariance, P(t0 ), the

old estimate can itself be treated as data. The observation

relations for the estimate are

x = (t) (4-15)

z = G (x, t) (4-16)

where I = the identity matrix

The augmented matrices are formed as

T =Fi (4-17)
-aug -

Loz
2 aug - - 0 (4-17b)

P-a[P ( to)L -i
r aug r e-)) (417c)

r .

22



where Xref = the assumed reference state.

The 'z' subscript denotes a vector or

matrix associated with the new data.

The 'aug' subscript denotes an augmented vector

or matrix.

The updated covariance is given by

+ T -1 -1
= (Taug Paug T aug)

=(-l(_ +T -i -i
=(P (-)+T Q- T ) (4-18)

-z - z -Z

The correction to the state vector is found similarly:

- T -1 1 T -1 -
6x aug P aug -aug )  -aug- aug aug

-1 T -1 --- -- T -1-
(p-'E (_) + TTz 2z) - ( - ( X ( - _ ref + Tz-2 rz)

(4-19)

Use of Equations in Filter Implementation

Starting with a good representation for the state

vector as a reference solution, xr(tii), integrate

x =(- (ti) ,t) (2-11)

xr i-1I

to the time of the first measurement, t.. Also integrate1

4) = A 4_ (t, t i_1)  (2-26)

to get the state transition matrix from time ti 1 to t..

The residual, r(t i), can be obtained from

r(t. =Z(t. 2 (X (t.),t. (3-22)
-r ±

23



Obtain current values for T(t.) and Q:

T(t i) = H(t.) _(ti,ti) (3-25)

'0 oil 0

L (constant for this implementation)

The covariance is updated by including the information

from the measurement:

P(t ) = [ (ti + T -T (t T(tj- (4-18)

The correction to the reference state vector is given by

6x(ti P (t(t ) (x- (ti) -X (t

+ T(ti)Qr (ti] (4-19)

This correction is added to the reference state, x r(ti-),

to get a new reference state. This procedure is continued

until the elements of the state correction, 6x(t i_1 ),

and/or the residual, r(t i ), meet convergence criteria.

When this occurs, the final Xr (t i_) is integrated to

time ti , where it becomes the reference state to be

integrated to the next measurement time. The covariance

is also propagated forward in time.

+ T
(t Ct t.(4-20)_ )  1 ti- ) P(ti I  ) (t i,ti

The iterations again proceed, using the next observation.

24



The Bayes filter algorithm lends itself well to the

performance parameter prediction problem. It can be started

with only a guess for the reference state. The inverse of

the covariance matrix, P (t), can be initialized as a

zero matrix, indicating there is no a priori knowledge of

the system. This is actually the case when looking at

launch data from a noncooperative ballistic missile.

With P -(t) equal to zero the filter relies only on

measurement data to make its corrections for the first

set of measurements.

Although the Bayes algorithm is sequential, it can

easily handle batches of data in a least squares mode.

This flexibility was found to be useful for handling

launch data and will be discussed further.

Initial Implementation of the Filter

trajectory

launchvehicle 
1

Ir

Y

I I Figure 4. Initial positions of target and observer

25
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The observer in this problem was assumed to be in a

geosynchronous equatorial orbit. Tracking sequences were

initialized with the observer positioned on the x axis as

shown in Figure 4. This caused no loss in generality

since the coordinate system chosen was arbitrary and the

target was initialized from a point not also on any of the

coordinate axes. During tracking, the observer progressed

counterclockwise along its orbit.

Filter performance was checked by first determining

its ability to determine zero-acceleration and constant

acceleration before looking at increasing acceleration from

launch data. The filter was able to detect and correct a

10-7 perturbation to the x position state on an unaccelerated

trajectory as shown in Table 1. The correction was based

on 8 measurements at 0.2 time unit (approximately 160

second) intervals.

With the same initial conditions the filter correctly

detected a constant acceleration of 10-6 in addition to a

perturbation to the x position state of 10- 7 . This correction

was based on 8 measurements at 0.2 time unit (approximately

160 second) intervals. Each measurement consisted of an

elevation and an azimuth. It should be noted that for

each of these cases the acceleration was constant which is

how it was modeled in the filter. Also, the time interval

between measurements was quite large. Time intervals of

this magnitude are unacceptable for estimating acceleration

during the ascent stages of a missile launch. The reason
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Table I. Good correction to first state

Filter Ax Corrections

x from 1st 2nd 3rd
initial true exp exp exp

1 .3026186 +10 -.100004 -6 -.697 -11 -.603 -10

2 .8637757 0 .510483 -12 -.156 -10 .271 -10

3 .3026185 0 .152964 -12 -.475 -11 .218 -10

4 .7316202 0 -.732311 -11 -.282 -10 -.472 -10

5 .6471292 0 .168399 -11 .232 -10 .449 -11

6 .7316202 0 .120171 -11 .819 -11 .117 -10

7 .0 0 .234957 -11 .120 -10 .895 -11

Notes: Corrections based on 3 sets of 8 observatio,s
Observations at 0.2 time unit (= 160 sec)
intervals
Unaccelerated trajectory

Table II. Good correction to first and seventh states

Filter Ax Corrections
x from 1st 2na ird
Xinitial true exp exp exp

1I .326186 +1 7  -9999286 -7 -.398 -10 -.501 -10

2 .8637757 0 -.7829917 -12 -.926 -11 .249 -10

3 .3026185 0 -.2544198 -12 -.149 -11 .192 -10

4 .7316202 0 -.4013456 -12 -.550 -10 .362 -10

5 .6471292 0 -.1409622 -11 .297 -10 .156 -11

6 .7316202 0 -.1307843 -11 .135 -10 .845 -11

71 .0 -106 .9999999 -6 .210 -10 .782 -11

Notes: Corrections based on 3 sets of 8 observations
Observations at 0.2 time unit (= 160 second)
intervals
Trajectory acceleration constant 

-10-6
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for this is that over large time intervals on a launch,

the vehicle acceleration would vary too much. This

variance would make the filter's constant acceieration

approximation less valid.

It was found that with just one observer the geometry

of the problem takes on increased significance. A

problem occurs when there is too little change in the

elevation and azimuth measurements. This can occur if

the time interval is too small, if the number of measure-

ments is too few, or if the target vehicle is traveling

away from the observer.

The geometry problem was highlighted during a zero-

acceleration trajectory. The interval between measurements

was 10 seconds and measurements were processed in batches

of 35. The filter was unable to converge on a solution

having zero acceleration. Instead, on each subsequent

correction the magnitudes of the corrections were

approximately twice the previous correction for each state

as seen in Table III.

This suggests that the filter was unable to distinguish

the target's position along the line of sight vector as

shown in Figure 5. The true target position, r, was

indistinguishable from alternate target positions, r!,

which would result in the same values for elevation and

azimuth.

To deal with the range observability problem a second

observer was added to the filter to give it essentially
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Table III. Observability problem with one observer

Filter Ax Corrections
from Ist 2nd .ra qth!

Xinitial true exp exp exp exp

1 .5168881 0 -.572 -5 .430 -4 .442 -4 .817 -4

2 -.5144469 0 -.114 -5 .546 -5 .662 -5 .117 -4

3 .8695028 0 .231 -5 -.577 -5 -.557 -5 -.102 -4

4 .4330464 0 -.137 -3 -.138 -3 -.276 -4 -.552 -3

5 -.4125317 0 -.168 -4 -.822 -5 -.228 -4 -.467 -4

6 .7156707 0 .225 -4 .142 -4 .346 -4 .701 -4

7 0.0 +.001 -.947 -3 .409 -4 .919 -4 .185 -3

Notes: Corrections based on 35 observations
Observations at 10 second intervals
Zero acceleration trajectory

Table IV. Increased observability

with two observers.

Filter x st correction
Zfrom
Xinitial true exp

1 .5168881 0 -.1695 -6

2 -.5144469 0 -.3243 -6

3 .8695028 0 .5529 -7

4 .4330464 0 .2563 -5

5 -.4123517 0 .4691 -5

6 .7156707 0 -.6703 -6

7 0.0 +.001 -.9954 -3

Notes: Corrections based on 35 observations
Observations at 10 second intervals
Zero acceleration trajectory
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R

R= observer position vector

r = true target vehicle position vector

ri 3 = alternate target vehicle position vectors

p = vector from observer to target vehicle

Figure 5. Measurement Ambiguity with One Observer

trajectory

~~2nd '

I ,

lst I.x b

Figure 6. Placement of 1ist and 2nd Observers
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a "stereo" view of the target vehicle's location. The

second observer was assumed to be in a geosynchronous

equitorial orbit, but was positioned 90 degrees ahead of

the first observer as shown in Figure 6.

With the same initial conditions the trajectory

was again run with the addition of the second observer.

The filter essentially corrected to the correct solution

in one iteration as shown by Table IV.

One more trajectory with constant acceleration was

tested before proceeding to launch trajectories. This

final constant acceleration trajectory started from

initial conditions similar to those for a launch trajectory.

Data was input every second and ten measurements were

proceszed simultaneously. The filter was allowed to iterate

using the first batch of data to see if it would converge on

a constant acceleration solution. The first correction

was best, after which subsequent corrections shifted away

from the proper solution as seen in Table V. Of particular

thinterest was the instability demonstrated in the 10 and

11 corrections. These two corrections were normalized

and their dot product was -0.999991289 which indicates

the vectors were parallel. Increasingly greater corrections

with opposite signs were being made along the same vector

in state space, characteristic of an oscillating divergence.

T -1The matrix, T T T, became noninvertable following the

11 correction. The reason for this instability was

not determined.
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Based on the filter's consistent ability to calculate

a good first correction with constant acceleration data,

filter performance with variable acceleratio,, data was

investigated. Data consisted of elevation and azimuth

measurements as described in Appendix C generated for

various time intervals. Because acceleration was modeled

as constant in the filter, compensation had to be made to

enable the seventh state to change with varying acceleration.

An ad hoc fading memory was added to the filter in

which elements of the covariance matrix were deweighted

to reflect decreased confidence in the seventh state.

This was achieved by pre-and post-multiplying the inverse

covariance matrix, P -(t)' by a diagonal matrix just

after propagation. The elements of the diagonal

deweighting matrix consisted of 0.99 for the first three

elements, 0.98 for the next three elements, and the

seventh element taking on various values less than 1 to vary

filter performance. (ref:8)

For filter attempts at estimating variable

acceleratini, measurements were provided at one second

intervals and were introduced to the filter in sets of

five measurements. Sets of five were used because of the

ease of implementation. As a lower bound, the filter had

.. to have an initial set of at least four measurements in

order to make all seven states observable. As an upper

bound, the larger the number of measurements per set,

the more the acceleration would vary over the longer time
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interval. This would make the filter's constant acceleration

approximation less valid.

Regardless of the value selected for the seventh

element of the deweighting matrix, the filter estimates

were similar. The first five acceleration estimates

increased linearly with values less than the actual values

as shown in Figure 7. The filter would then respond to

the increasing residuals, overcompensating with excessive

estimates for acceleration.

In view of these results an attempt was made to

implement a better model of acceleration in the filter.

An additional state was required to do this. The development

and results are contained in the following chapter.
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V The Eight - State Filter Model

Because of the instability demonstrated by the seven -

state filter, the filter representation for acceleration

was changed to get a better depiction of reality. Treating

acceleration as constant between updates was attractive

because it would have been conceptually general enough

to allow the filter to process data from the ascent of a

launch vehicle as well as from the descent of a reentry

vehicle. The performance of such a filter negated the

possibility of using so general a model.

Derivation of Equations

If thrust is assumed constant for each stage of a

launch vehicle in accordance with usual theory (Ref 4:369),

the acceleration of the vehicle can be described by the

equation

aT Ve(m0_;t) (5-1)

where aT = acceleration due to the thrust

m = the propellant mass flow rate (known as S in

some literature)

m0  the original mass of the missile (including

propellant)

t = time in any consistent units
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If implemented in this manner, the filter would gain

three new states - Ve , n;, and m0 . However, if the

numerator and denominator are divided by m0 , aT becomes:

mo

aT V 0 V M (5-2)aT = e ) Ve (1-Mt)(52

m0

where M = the relative mass flow rate.

This reduces the number of additional states to two,

making an eight-state filter with the state vector:

x =x (5-3)

y

z

v
y

v

Ve

M

The resulting equations of motion are:

x = F (x(t),t) = vx  (5-4)

v
y

v

-x/R + aT v x/V

-y/R 3 + a T V y/V

- + aTvY/V

0

0 J

siej

3I



where, as before: R = + +

=2 2 2V =V + v+ v
x y z

aT Ve M

Further, the new states result in changes to the A

matrix. Aside from A now being an 8x8 matrix, there are

six new non-zero terms:

Vxa T
A4 ,7  av VT (5-5)

e

A vaT + T) (5-6)4,8 ;

v a
A 5 7 - (5-7)A5,7 v N7

e

a2 t
Aa T aT

A KVM + (5-8)A5,8 v

A zT (5-9)
A,7  vV

e

v fa t a

6,8 v+ (5-10)
\e

The added elements to both G and H due to the

additional state are zeros. Other than modifying matrix

dimensions and indices for compatibility with the eighth

state, no further changes to the filter were required.
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Filter Checkout and Performance

The filter was initially given data with one second

between observations (at each observation time the filter

was given elevation and azimuth data from both observers).

When these data were processed to produce a least squares

estimate, both exit velocity, Ve , and relative mass flow

rate, M,were observable. However, when the time interval

between observations was increased to ten seconds, the

resulting summation of TTQ- T was ill-conditioned and

couldn't be inverted. The diagonal elements corresponding

13to the position states were of the order 103; those for

18velocity were of the order 101; while those for Ve and

2 12M were 10 and 10 respectively.

As a result of these numerical difficulties, the

seventh and eighth states were reinspected for possible

changes. Magnitudes of Ve were typically 200 to 300

while those for M were approximately 0.005. Magnitudes

for position and velocity were from 0 to 2. By multiplying

Ve by M in the numerator of the acceleration expression, the

term is changed from

at V M

e (l+Mt)

to

VI
aT l+Mt (5-11)

where V' = V x M
e
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This new parameter has dimensions typical of an acceleration

and magnitudes in the range of 1 - 2. When this parameter

was adopted into the filter and the same data was run as

before, the estimate was again stopped by an ill-conditioned

covariance matrix. The diagonal elements of the last two

states were both of the order 107, while those corresponding

to position and velocity were as high as before.

The same filter configuration was then given data from

the second stage of the ascent. Thirteen observations were

processed simultaneously. The covariance matrix was invertible,

but the filter correction was unsatisfactory. The filter

was not able to identify and correct perturbations to the

initial conditions of the states. The corrections indicated

that the filter was attempting to reduce the residuals by

correcting all states an equal amount, instead of just the

ones which had been perturbed from nominal values.

Based on this result, observation data was generated

which attempted to accentuate the quadratic effects on

position due to acceleration in contrast to the linear

effects due to velocity. To clarify this somewhat, if

residuals were calculated for a trajectory in which the

initial position states had been perturbed, there would

essentially be a constant displacement in the calculated

observations. This would result in residual values which

were proportional to the original position perturbation:

r cAcp (5-12)
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where r = residual

Ap = perturbation in position

In contrast to this, if the initial velocity states were

perturbed, the residuals could be expected to grow

linearly with time:

r = Av At (5-13)

where At = the change in time

Av = perturbation in velocity

And finally, with perturbation of the initial acceleration

state(s), the residuals would increase approximately

quadratically with time:

r x Aa (At)2  (5-14)

where Aa = perturbation in acceleration

Therefore, for small trajectory arcs (small At) the filter

could resolve the residuals by changing position, velocity,

acceleration, or any combination of the three. Alternately,

for long arcs of data, acceleration effects should be

dominant. With this reasoning, a trajectory was generated

which varied in acce.Leration from a value of 1.09 to 20.

With small corrections to either the seventh or eighth

state the filter calculated corrections for all states as

seen in Tables VI and VII. Given the correct values for

the two acceleration states and with the fourth state

perturbed the filter still made inappropriate corrections

as shown in Table VILL The reason for these problems was

not determined.
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Table VI. 8-state filter, 7th state perturbed

Filter Ax Corrections
from 1st 2nd

Xinitial true exp exp

1 1.1045353 0 -.39607951 -6 -.14425749 -6

2 -.6377037 0 -.10541036 -7 -.24694020 -6

3 0 0 -.53911275 -7 -.26563227 -9

4 .3391559 0 .27334082 -6 .16089711 -6

5 .5874354 0 .40171909 -6 .69744367 -6

6 .5691713 0 .48656250 -6 .63308899 -6

7 1.090001 +10-  -.15398878 -5 -.10089342 -5

8 .00051893 0 .10604722 1-9 1.27149168 -9

Notes: 180 observations processed simultaneously
Same data for both corrections
10 second interval between observations
Acceleration increased from 1.09 to 20

Table VII. 8-state filter, 8th state perturbed

Filter Ax Corrections
from 1st 2nd

x initial true exp exR

1 1.1045353 0 .44489853 -3 .17403788 -3

2 -.6377037 0 .13866326 -4 .15267806 -3

3 0 0 -.27868686 -5 .29973877 -4

4 .3391559 0 -.46312445 -3 -.36587537 -3

5 .5874354 0 .52541563 -4 -.34485975 -3

6 .5691713 0 .26822451 -4 -.23568659 -3

7 1.09 0 .49368101 -4 .67655352 -3

8 .00051993 +106 -.10231345 -5 -.71595424 -7

Notes: 180 observations processed simultaneously
Same data for both corrections
10 second interval between observations
Acceleration increased from 1.09 to 20
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Table VIII. 8-state filter, 4th state perturbed

Filter Ax Corrections
from 1st 2nd

Xinitial true exp exp

1 1.1045353 0 --..12170983 -5 1.79428858 -6

2 -.6377037 0 .81175116 -7 -.75370992 -7

3 0 0 -.27062575 -7 -.90027939 -7

4 .3391569 +10-6  .14454243 -5 .22434660 -5

5 .5874354 0 .34219555 -6 .86850929 -6

6 .5691713 0 .21885328 -7 .37698359 -6

7 1.09 0 -.21938892 -5 -.29797983 -5

8 .00051893 0 .39798295 -9 .64701346 -9

Notes: 180 observations processed simultaneously
Same data for both corrections
10 second interval between observations
Acceleration increased from 1.09 to 20
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VI Conclusions and Recommendations

Conclusions

(1) The seven-state (3 states for position, 3 states

for velocity, and 1 for acceleration) Bayes filter can

estimate acceleration of a launch vehicle if the acceleration

is constant (including zero acceleration).

(2) Study results indicate that variable acceleration

cannot be estimated with the seven-state Bayes filter

employing a fading memory to compensate for the constant

acceleration modelled in the seventh state.

(3) Results indicate that variable acceleration

cannot be estimated with an eight-state Bayes filter with

acceleration modelled using engine exit velocity, launch

vehicle mass, and propellant mass flow rate.

(4) If measurements from only one observer are

available, data arcs yielding small changes ±n the measure-

ment angies may result in an unobservable system. The

short data arcs can be the result of too short a time

interval of observation or problem geometry.

Recommendations

Some alternate methods need to be studied which

specifically take advantage of the type of measurementsH available in this problem. The azimuth and elevation

measurements should result in a good position time - history

for a launch vehicle. Two possible approaches to using

this information follow.
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One possibility might be to alter the existing

structure of the filter algorithms used in this study.
Typically, at the initiation of a launch, the launch position

is well known. The velocity starts at zero, but its

direction is not well known a priori. The acceleration

can be said to be greater than one but is otherwise unknown.

The basic idea would be to correct the states according to

their expected contribution to the residuals. Therefore,

the acceleration state(s) would be corrected (ignoring

the other six states) on the initial filter iterations(s).

The velocity and position could be corrected subsequently

(velocity corrected before position). If the launch

location was assumed known, position wouldn't be corrected

at all.

Another alternative would be to use a smoothing process.

Elevation and azimuth data would be used to get a time-history

launch vehicle position. A smoothing process (ref:5) could

be used to get a smooth curve which would be differentiated

analytically or numerically to get velocity and then

acceleration. If numerical differentiation is used to

get velocity, the velocity curve would also have to be

smoothed before differentiating to get acceleration. In

addition the acceleration might also need smoothing to

get a good representation of acceleration for all times

of interest.I}
Further analysis should be conducted to investigate

the causes of some of the problems encountered during
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this study. With regard to observability problems, range

measurements might be added to see if the problems

disappear. If so, the deletion of range measurements and

addition of another observer could be tried to see if

similar results are obtained. If, instead, the addition of

range measurements doesn't affec-t observability, further

analysis would have to be conducted to look for the

real cause of problems.

Special attention should be paid to the time intervals

of observation. Long term propagation of the state trans-

ition matrix may be erroneous. This could then be the

source of many problems.

With the seven state filter, some alternate fading

memory techniques might be attempted. Also, the use of

pseudo-noise was not tried in this effort because of the

desire to keep the model simple. In view of results

obtained thus far, pseudo-noise addition is a possibility

which might be investigated.
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Appendix A

Derivation of the A Matrix

The elements of the A matrix are found by taking the

gradient of the dynamics matrix (vector), F.

A = VF (A-1)

where the elements are given by

A.- 3F Fi (A-2)1]
ax.

Therefore:

ax1  ax ax ax ak ax ax

ax1  3x 2  ax3  4  ax5  ax6  x 7

ax
1

- ax1I

ax4

ax (A-3)

ac5
ax 1

a 6Lax7a 7 . . . . . . . . . . . . a 7
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Using the state equations given in Chapter II, the nonzero

elements of A are:
ax (A-4)

A14 =- x~ =1 (A4
14 av

A y 1 (A-5)Ii25 3-

36 = -(A-6)

A 41 3 = -v + 3ix (A-7)
41 x r3  r-5

A ax=3uxy (A-8)42 r

A43 = x = 3xz (A-9)
az r 5

244= -v a

A4= 3= v (A-10)

av -vv

x

A4= x = xy (A-11)4 Vy 3
0v

A4 =v Vx = -v x vza (A-12)

vz v3

A4 7 = x= Vx (A-13)

S3ux (A-14)
5 ax r

& 2
A y - + 3Y 2 (A-)52 = (ay v3 r5ay r

A = VY = 3yz (A-16)
53 r
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4 -vva (A-17)

54 avX 3

yx

A54 = =v +V3 A-8

5 -v V a (A-18)

avA= V (A-19)A56 v--- v3 -

AS y = v (A-2o0)
57x

at V

AaZ = 3 (A-21)A 61 = Y-

r

A 6 2  z =3lzY (A-22)

3y r5

Av 6 3 1z2  (A-23)

63 r 3 r5

A = z = zv x a  (A-24)
64 v 3

V65 = z az (A-25)

y v3

2 (A-26)

A66 = av z  =-va + a
66v

av--z v 3  v

A6 7  v Z (A-27)

where2 2 2
r =x +y2+z2

V= V +Vy+V z

and other variables are as defined in Chapter 
II
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Appendix B

Derivation of H Matrix

The elements of the H matrix are found by taking the

partial derivatives of elevation and azimuth with respect

to all elements of the state vector. H is therefore a

2 by 7 matrix given by:
3G el 3el 3el 3el 3el 3el 3el I

G 3x @y 3z av Dv av a(H = =-- x :-)
ax 3az 3az 3az aaz aaz 3az aaz

a ay az 3vx avy avz 3a

The last four columns of the matrix are zero.

Partial derivatives of elevation:
(r *R) 1-. R

el = sin -1  R (B-2)

1 dud dx(B-3)

dx (sin u) /- dx

= / 2+ 2+ 2  (B-4)

x +y +z

where x,y,z are position components for the target vehicle

= R 2+R 2,R 2(B-5)
x y z

where Rx, Ry, R z are position components of the observer.
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Using eqs (B-2) and (B-3):

+r

axdA ~J B6

ael L -R(r .R) +r +

+ -R (RR) + 1 -(B-7)

rI-2

Similarly:

e__l = -- .( ~ r-R (B-8)

-R1r R _+rj) + jI

ael r L r-R1) Ir- (B-9)

az r ___9__

Partial derivatives of azimu~.th:

-(r -Rr "m + 1

az= cos - (B-l0)
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(cos- 1 u) = (B-1)
1-u

From eqs (B-10) and (B-i)

T (r . R) k
U (B-12)

__-_R_ r

the numerator is:

-R z R x+yR y+zRz

R 2 +R
2  2 

x y z

Let: DOT = x +yRy +zR z

RSQD R2 +R2 +R2

x y z

So the numerator can be written: z - Rz DOT

RSQD

2 z - z
2 RSQD (B-13)

R RDOT\ 2 + yRO 2 R DOT) 2 (-

(- x I
RSQD / RSQD / RSQD/

--

duR _ DOT) I RDOT\ 2  ( RO 2

du~ z Y

dx RSQD BRSQD

+2 ~ O9-3/2 [R2 x RDOT)( R2D)

(-RxR / R-DOT\ /-R R

+ 2iy- RSQD +Q (2 )Z RSQD yRQ~
-R Rx z

+ / RDT'2 RSQD ROT (B-14)

RSQD )+ RSQD RSQD
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so* d

U-I

( RDOT') 2

1- RSQD

RD RDOT 2 R zDOT 2

F (x- R)Q + (Y RQ

RSQDD

+ 2

(~-RS )i Lk RSQD)(Q RSDAR S'(R

SQD ~ RQ

R DOT Y R DOT~ 2 RDO

I( - -RQ RSQD /RSQD (-5

R DOT2 R DOT\ 2 R DOT 2 O 2-/
duz[_x + y Z

(Z -RSX RSQD -SQD RSQD (-5

du (RDOT DOT 2R R DOT 2  /A RRO 2/

L2  RSQD )k\SQD/ RSQD , SD\ RSQD RSC

-R R

+ 2 RSQD
+~ '\OT 2DO2'

DOT ( (RDOT 2

y\C- -RSQD RSQD (B16
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so (cos-lu) -

d y 
R D O T)1-Z -RSQD)

R.OOT2 (DT2  ROT 2

(-RSQD ) RSQD TS QD)

( R1 Z. DOT) R D ~ x...OT~ /-RR RyDOT 2 R 7 RDOA /-R R
RD\RSQD RSQDI RSOD , RQ/ SD SI

R DOT) + ( R 2DOTOT 2' 3/2

[(X >2 + z
LRSQD /RSQD RS +

-R R

+ RSQD

R( DOT)2 + RDOT 2  (RDOT\ 2

__ + z
/X + ] V RSQD /&O (B-17)

R DOT RXDOT 2 R DOT RODOT] -3/2

du z Z xr
dz RSQD RSQD SD _!iDj

R (RDC -R R( RDOT R.R.\+ RDOi\( R 2

2)(2) RSQD )T-D ( '\RS QD) (2 Z RSQD RSQDi

R RDOT\ R RDOT 2  RODOT 2

\ - RSQD (y RSQDT/ (B-18)
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so: -(Cos- U)dz

zDOTN~

2 2 2R DT) R DO + RDOT

LR RSQD )

( R2

1RSD ISD TQD Q

RDOT2 R DOT 2 RDOT23/

RSQD +Z y- z

)RSQD /

v 
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APPENDIX C

Description of Preliminary Truth Model

for Data Generation

The preliminary truth model used in testing the filters

was admittedly simple. Variable effects on the trajectory

caused by the atmosphere (density changes and winds) and

variations in the thrust were neglected. These variations

were never added due to the level of performance attained

by the filters.

The launch trajectory was elliptical and was generated

using modified two-body dynamics. During the initial

portion of the trajectory, the effect of thrust was added

to the equations of motion in the form of an acceleration.

The seven-element truth model state vector consisted of

three states for position x, y, and z; three states for

velocity - vx, vy, and vz; and a seventh state for

acceleration due to thrust - a.

To model acceleration, it was assumed that thrust was

constant for each stage and that the initial

thrust to weight ratio was known (ref 4:369). The

exhaust exit velocity can be determined from

ve =1 I (c-l)

e sp

where Ve = exit velocity of rocket engine exhaust

(ft/sec)

Isp = specific impulse of rocket engine (sec)

g = gravity (ft/sec 2)
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If the value for thrust is known, the mass flow rate can be

obtained from

T = V e$ (C-2)

where T = thrust (ib)

= mass flow rate (lb-sec/ft)

The acceleration due to thrust is then given as a ratio of

thrust to the instantaneous weight (the weight is decreasing

as propellant is burned), therefore

T Ve
a (C-3)

(m0 - at)g (m0 - Bt)g

where a = acceleration due to thrust

m 0 = initial mass of the rocket stage and its payload

(slug)

t = time (sec)

g = gravity (ft/sec
2

This can also be expressed as

V M
e (C-4)(1 - Mt) g

where M = -a a relative mass flow rateM0,

Taking the time derivative gives
2v M= e (C-5)

2

(1 - Mt)2
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The trajectory resulted from integrating the modified

two-body equations of motion:

F= x = v (C-6)~x

y Vy

v
z

* 3V x -X/R + (a) (vx)/v

Vy -y/R3 + (a) (V y)/v

Vz -z/R3 + (a) (v z )/v

S VeM 2/(l-Mt)2

where
R3 = (x2 + y2 + z2)3/2

v (2 +v2 +V )2 1/2v = (v +)l/2
x y z

Ve = exit velocity of propellant from rocket engine

M = relative mass flow rate, the mass flow rate of

propellant from the engine divided by the total

initial mass of the launch vehicle, /m0

t = time

a = acceleration due to thrust; assumed to act

in the direction of the velocity vector

Initial conditions on many of the states were critical.

Criteria for the position states were:

(1) that the square root of the sum of the squares

of the position components equal I (distance unit).

In other words, the launch point was on the

earth's surface.

(2) Coordinates were restricted from any of the axes

in order to keep away from special cases.
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(3) The launch point should be in the field of view of

both observer satellites.

The criteria on the velocities were most critical:

(1) The magnitudes had to be small to simulate

near-zero velocity at lift- off, but couldn't be

zero because of the need to prcvide a direction

for acceleration.

(2) The relative magnitudes between velocity components

needed to follow closely magnitudes between

position components for a near-vertical takeoff.

(3) The velocity had to deviate slightly from

vertical to result in a gravity turn within the

field of view of the observers.

Trial and error was used to come up with proper initial

velocity ccnditions. Velocity magnitudes approximately
-3

10 that of the position vector proved successful. A

velocity magnitude decrease of approximately one percent

from vertical was used to result in a gravity turn in the

direction of decreased magnitude.

Values for the thrust profile were derived from

parameters for a Titan IIIB rocket (ref 6:5-141).

1st stage Ve (exit velocity) - 8243.2 ft/sec

Thrust - 464,900 lb

Propellant mass flow rLte - 56.398 lb-sec/ft

2Initial mass - 11,275 lb-sec /ft

60

il



2nd stage Ve - 10,220.3 ft/sec

Thrust - 102,300 lb

Propellant mass flow rate - 10.0095 lb-sec/ft

Initial mass - 273E lb-sec 2/ft

3rd stage Ve - 9402.4 ft/sec

Thrust - 16,000 lb

Propellant mass flow rate - 1.7017 lb-sec/ft

Initial mass - 455 lb-sec /ft

To simulate staging, time dependent conditional

commands were used to select a different subroutine for

each stage. At the beginning of each stage the acceleration

would begin with a nominal value, VeM. Acceleration

increased, reaching its maximum just before staging as

shown in Figure C-1.

I-
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